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Abstract 
Recently, there have been increasing demands for 

the postponement of decisions on software adaptations 
and product variations to provide the flexibility re-
quired by dynamic environments and users. The goal is 
that software adaptations and product variations can 
be chosen even at runtime. As such, a research theme 
that addresses development issues for reusable and 
dynamically reconfigurable core assets has emerged 
and it is called dynamic software product lines 
(DSPLs) with its consequential need to manage run-
time variability. Research on the use of runtime varia-
bility, however, is still heavily based on the specifica-
tion of decisions during design time. That is, a system 
simply postpones “when to adapt” to runtime but 
“how to adapt” is already decided at design time.  In 
this paper, we present a brief assessment of the current 
research in the area and discuss some research issues 
related to the feasibility of DSPL oriented approaches 
to build self-adaptive systems. 
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1. Introduction 

In [1], commonalities and differences of variability 
management between software product lines (SPLs) 
and runtime adaptation (RTA) are analyzed and initial 
discussions about the synergies and feasibility of inte-
grating variability management in both areas are pre-
sented. One of the conclusions was that the SPL com-
munity can provide well established variability model-
ing techniques and software reuse. At the same time, 
the SPL community can profit from the management of 
QoS and dependability properties, systematic ap-
proaches of variable binding time, and formalization of 
context information and relations with product variants 
provided by the RTA community. In this paper, we 
continue the research in those lines and present a brief 
report about different research works on runtime varia-
bility (also known as dynamic variability) [19]. Our 

main goal is to present a brief assessment of the current 
research to assess the feasibility of DSPL oriented 
approaches to build self-adaptive systems. 

The remainder of this paper is organized as follows. 
Section 2 presents a range of approaches to tackle 
runtime variability. Section 3 provides a discussion 
about the comparison and contributions of the ap-
proaches and their abilities and shortcomings w.r.t. 
building self-adaptive systems. Some research issues 
and questions are also presented. Finally, Section 4 
concludes the paper. 
 
2. A range of approaches to tackle runtime 
variability 
 
2.1 Criteria 

Numerous researchers from different research areas 
and research projects have developed approaches that 
use the concept of runtime variability contributing to 
runtime adaptation of systems. Runtime adaptation 
deals with uncertainty about the environment and so 
changes (i.e. adaptations) cannot be fully predicted at 
design-time [34]. 

Our comparison criteria are related to two different 
dimensions of the uncertainty and are the following: 

When to adapt: refers to the specific time where 
precise circumstances (context or environment) are 
given and provoke an adaptation or change. The specif-
ic moment of time is unknown during design time; 
however it could be characterized during design-time 
to eventually be solved at runtime.  

How to adapt: refers to design decisions related to 
finding the appropriate sequence of actions to adapt 
and the software mechanisms that enable adaptation. 
Traditionally, in SPL and RTA techniques, the ques-
tion how to adapt is decided by the designer, applica-
tion engineer, user, i.e a human; however the final goal 
is having the system partially making (some) decisions.  

It is important to highlight that in the context of this 
paper, the later these questions are answered the more 
dynamic the system is. 



A further refinement of the criteria is provided by 
the MAPE-K model [21, 33] proposed by IBM as a 
reference model for autonomic computing systems. It 
models the autonomic element as consisting of an 
autonomic manager and a managed element. MAPE 
denotes the four main activities of the autonomic man-
ager control loop (monitor, analyse, plan and execute), 
while the K denotes the knowledge about the managed 
element and its operating environment needed by these 
activities to perform successfully. Monitoring and 
analysis deal with “when to adapt” and planning and 
executing deal with “how to adapt”.  

We consider that the degree of dynamicity depends 
on to which extent these tasks are driven by models 
(the K component), and to which extent these models 
can be extended and refined at runtime.  

When it comes to how to adapt, the kind of changes 
supported also plays an important role. At the basic 
level is setting configuration parameters, replacing 
individual parts and dynamic aspect weaving. At the 
next level is the ability to modify the architecture by 
replacing compositions. At the highest level is the 
ability to invent new compositions at runtime. 

The surveyed approaches are presented and posi-
tioned in light of this model in the following sections. 

 
2.2 Approaches 
 

Geihs et al [14] from the team of the EU project 
MADAM promote the use of architectural models [13], 
use the adaptation capabilities offered by middleware 
platforms, and at some level treats dynamically adap-
tive systems as DSPLs with the corresponding support 
for variability management. In contrast to traditional 
event-condition-action (ECA) rules, they use goal 
policies provided during design time which are ex-
pressed as utility functions leaving to the running sys-
tem the decisions on when to apply the actions required 
to implement the policies (tackling the question when 
to adapt). The reconfiguration steps to follow are de-
termined by comparing the actual running system with 
new architectural variant models based on the utility 
function. The main variability mechanism provided by 
the MADAM approach consists of loading different 
implementations for each component type (primitive or 
composite) of the architecture. Using primitive compo-
nent types, fine grain management of variability can be 
used to describe specific component replacements or 
specializations. They also take into account the bene-
fits of coarse grained variability mechanisms using 
composite components. Both, fine and coarse-grained 
mechanisms are specified at design-time. The reason-
ing on when and how to adapt are based on models 
packaged with the component implementations (atomic 

or composite), and component implementations can be 
added or withdrawn at runtime. All variation points are 
open and the available component implementations 
and compositions are discovered dynamically at run-
time. This enables to extend and refine the adaptation 
capabilities at runtime. The MADAM approach fo-
cuses on mobile computing applications.  

 
The EU MUSIC project [32, 20, 23], strongly inspired 
in the previous results of MADAM, extends and gen-
eralises the experimental solutions developed in 
MADAM and take them to a next level of maturity 
[28]. It applies the same adaptation reasoning approach 
as MADAM, but generalises the approach to ubiqui-
tous computing and Service Oriented Architectures 
(SOA). This includes extending the monitoring task 
with dynamic service discovery and the monitoring of 
service quality, and the executing task with the possi-
bility to change service binding and service offers. 
With this the adaptation controller controls not only the 
internal configuration of a system, but also its collabo-
ration with other systems, which in turn enables the 
creation of new structure at runtime. As in MADAM, 
in MUSIC all variation points are also open and the 
available component implementations and composi-
tions are discovered dynamically at runtime. However, 
forming of new compositions at runtime is supported. 
The sequence of steps necessary to get from the current 
to the new configuration is derived at runtime based on 
the differences between the two. 

 
Bencomo et al [3, 4] and the team of the UK 

project Divergent Grid [18] offer the Genie approach 
that also uses architecture models to support the gener-
ation and execution of dynamically adaptive systems 
based on component-based middleware technologies. 
A state machine is defined to specify the adaptive logic 
of the system. Each state embodies a system configura-
tion (target system), and transitions describe when 
(needed conditions) and how the reconfigurations take 
place (reconfiguration script). The architectural models 
are complemented and documented using explicitly 
orthogonal variability models (OVM) [31]. These 
architectural and variability models are used to gener-
ate different software artifacts, e.g. configuration files 
and event-condition-actions (ECA) adaptation policies. 
The adaptation policies generated from the state ma-
chine solve the question when to adapt at runtime. The 
drawbacks of the approach are that (i) the possible 
system configurations need to be enumerated and fully 
specified, and (ii) the reconfiguration scripts should be 
written manually. However, using the API offered by 
the underlying execution platform some degree of 
support for unforeseen configurations and adaptation 
rules is managed as new behavior can be dynamically 



inserted [2] without restarting the system. New beha-
vior should also be validated in advance. Bencomo et 
al. work covers the domains grid, mobile computing, 
and embedded systems. 

 
Wolfinger et al [35] prove the benefits of the inte-

gration of an existing product line engineering tool 
suite with a plug-in platform for enterprise software. In 
the same way as the Genie approach explained above, 
the knowledge documented in variability models sup-
port the decisions made to achieve automatic runtime 
reconfiguration and adaptation, i.e. design decisions 
contained in the variability models (decision models 
[10]) will be delayed till runtime (answering when to 
adapt). Different from the approaches Genie and MA-
DAM/MUSIC described above, Wolfinger et al focus 
on enterprise software domains. While variability deci-
sions in Wolfinger’s approach are user-centered, the 
variability decisions in Genie and MADAM/MUSIC 
are mainly environment-centered. 

 
Morin et al [27, 26] from the EU DiVA project 

[11] use model-driven engineering (MDE) and aspect-
oriented modeling (AOM) techniques to support run-
time variability. Tackling the explosion of the number 
of configurations potentially presented by all the ap-
proaches explained above, Morin et al offer an alterna-
tive solution that automatically builds architectures by 
composing modules (called aspects) associated to fea-
tures, instead of fully specifying all the possible confi-
gurations. Depending on the current context, suitable 
aspect models are woven into a base model (that covers 
the communality), in order to build a complete target 
configuration, well fitted to the current context. After 
models validation, and as in MUSIC project, a compar-
ison between the current configuration and the target 
configuration is performed. The comparison results 
allow the generation of the reconfiguration scripts 
needed to adapt the running system from one configu-
ration to another more suitable to the current context. 
The reconfiguration scripts describe reconfiguration 
commands that adapt the system architecture enabling 
therefore the development of adaptive systems avoid-
ing the enumeration of all the potential configurations 
(similar to MUSIC). Crucially, the adaptation model 
includes invariant properties and constrains that allow 
the validation of the adaptation rules before execution 
at design-time using model-checking techniques [12].  
A set of adaptation rules are defined based on proper-
ties of the system-to-be optimized during runtime, i.e. 
adaptation rules express the adaptation policy in terms 
of the properties of the system to optimize and not 
directly in terms of the variants to use. Optimization 
decisions are performed at runtime (answering when to 
adapt). Variability decisions in Morin’s et al approach 

are both environment-centered and user-centered con-
tained in the specification of contexts.  

 
The approach proposed by Lee et al is described in 

[25, 24]. The authors address issues in the area of 
adaptive service-oriented architectures (SOA) by 
adapting a feature-oriented product line engineering 
approach. The approach is based on the feature analy-
sis technique to support the identification of services of 
service-oriented systems. The approach guides devel-
opers to identify services, to map users’ context to 
relevant service configuration, and to maintain system 
integrity in terms of invariants and pre/post conditions 
of services. In their approach, the runtime system inte-
racts with service providers’ using an automated nego-
tiation broker which uses QoS negotiation and service 
level agreement (SLA) evaluation and a provider rating 
to ensure service acceptability. A monitor is provided 
which actively observes the QoS requirements and 
triggers a new negotiation (adaptation) whenever SLA 
is violated at runtime (answering the question when to 
adapt). 

 
Cetina et al [6, 7] from the SESAMO project out-

line reuse design variability models during runtime to 
tackle runtime variability. The benefits are immediate, 
as the design knowledge and existing model-based 
technologies can be reused at runtime. The runtime 
variability models support the self-reconfiguration of 
systems when triggered by changes in the environment. 
The question when to adapt is solved at runtime when 
checking a set of context conditions. The approach 
performs reconfiguration in terms of features and uses 
an engine called MoRE  to translate contextual changes 
into changes in the activation/deactivation of features. 
The engine generates the reconfiguration plans (recon-
figuration actions) that will modify the system archi-
tecture activating/deactivating features. Cetina et al 
have applied their approach to the smart-homes domain. 

 
Perrouin et al [30] also tackle the problem of the 

exponential number of configurations and adaptations. 
However, different from works described above the 
authors acknowledges the complex relationships be-
tween the running system and its environment which 
may impact application functionalities and perform-
ance. Perrouin et al advocate that when capturing these 
relationships directly using a limited set of architec-
tural models creates the risk of overlooking important 
environmental states and thus missing relevant archi-
tectural configurations. Therefore, the authors propose 
models for three different dimensions stressing separa-
tion of concerns: functional dimension (modelled using 
feature diagrams), topological dimension aiming at 
defining the possible bindings configurations for given 



set of components (architecture), and platform dimen-
sion. The models of these dimensions are fully speci-
fied during design-time. Authors “do not integrate 
timing issues” [30], i.e. they do not tackle when to 
adapt, therefore all the design decisions are made be-
fore runtime and they are not re-evaluated at runtime.  

Gomaa and Hussein [17] present their approach 
for the design of reconfiguration patterns for dynamic 
reconfiguration of software product families. Gomaa 
and Hussein see software reconfiguration pattern as a 
solution to the problem in a software product family 
where the configuration needs to be updated while the 
system is operational. Patterns define how a set of 
components participating cooperate to change the con-
figuration of a system from one configuration of the 

product family to another. Their approaches do not 
explicitly say how to delay design decision till runtime. 

 
There are other research projects and approaches; 

however, they tend to fail tackling the questions when 
and how to adapt, adding nothing new to our report. 

 
3. Discussion 

The overall results of the comparison are shown in 
Table 1. For each approach, the table shows if the 
questions are answered at runtime (using a check 
mark) or before i.e. at design-time.  

 

 
 

Approach When How
 M A P E K

MADAM 
at runtime and 

encoded in archi-
tecture/context 

model 
 

at runtime  
encoded in ar-

chitecture/context 
model 

at runtime  
generation of 

reconfiguration 
scripts 

 supports 
configuration 

parameters and  
replacement of 

components  
and compositions 

 

context 
model+ 

architecture 
model 

annotated 
with property 
predictors and 

utility 
function. 
Models 

extendable at 
runtime 

MUSIC 
at runtime and 

encoded in archi-
tecture/context 

model 
 

at runtime  
encoded in archi-
tecture/context 

model 

at runtime  
generation of 

reconfiguration 
scripts 

+dynamic ser-
vice bindings 

(that were 
never designed 

explicitely)  

Same as 
above  

+ service binding 
and service offers 

+ aspects 
 

Same as 
above + QoS 
aware model 
of available 

service 
providers and 
own service 

offers 
Models 

extendable at 
runtime 

Genie and 
Divergent 

Grid 
Bencomo et 

al  

at run-time 
 and encoded in the 
state machine 

at design time 
and encoded in the 

state machine 

at design 
time and en-
coded in the 

state machine 

at design-time 
Component re-

placements 
Component com-

positions (with 
component 

frameworks) 

context 
model+ 

architecture 
model 

 
Models 

extendable at 
runtime 

Wolfinger 
et al 

 

at runtime 
Decision models 

at design time  at design 
time  

at design-time 
Plug-in techniques 

N/A 



DiVA 
Morin et al at runtime  

adaptation rules 
 

at runtime 
Optimization of 
adaptation rules 

using fuzzy logic 

at runtime 
generation of 
reconfiguration 
scripts 

Component 
Compositions 
(architectural 

models) 
Aspect mod-
els/weaving 

context 
model+ 

architecture 
model + 
aspects 
models 

 
Models 

extendable at 
runtime 

Lee et al 
 at runtime 

Monitoring SLA 
and QoS properties 

at runtime 
Optimization in 
terms of QoS 

at design-
time 

Feature dia-
grams 

Service con-
tracts 

at design-time 
Component re-

placements 
Component com-
positions (with C2 

style architec-
ture  ) 

context 
model+ 

architecture 
model 

Models not 
extendable at 

runtime 

SESAMO 
Cetina et al at run-time 

Monitoring context 
conditions 

at design-time 
 

at design-
time 

Feature dia-
grams and 

Context proper-
ties 

Feature tree (acti-
vation and deacti-
vation of features)  

Feature Trees 
Models not 

extendable at 
runtime 

Perrouin et 
al  
 

at design-time 
 

at design-time 
 

at design-
time 

Functional, 
topology and 
platform di-

mensions 
(UML models) 

N/A N/A 

Gomaa and 
Hussein  

 

at design-time at design-time at design-
time 

Design patterns 
(UML models) 

N/A N/A 

 

solved at runtime and driven by  models/decisions specified at design time  
(if extendable at runtime shown in K column) 

soved at designed-time, decisions are specified before runtime (design or deployment time) 
 

Table 1. Results of the comparison. 
 

The results show that there have been excellent con-
tributions in the area. However, the survey also shows 
that our current DSPLs may not be as dynamic as we 
want to believe. The current research on runtime varia-
bility still focuses on the specification of decisions 
during design-time with few exceptions like generation 
of the reconfiguration scripts during runtime, (see 
discussions for MADAM, MUSIC, and DiVA). Deci-
sions taken at runtime are heavily based on the uncer-

tainty related to “when to adapt” and no definite an-
swers are provided to tackle uncertainty related to 
“how to adapt”. As an anecdote, it looks like we can-
not get rid of the basic good old lessons from abstract 
interfaces and decomposition [29] and design by con-
tract made during design. This may explain the bias we 
can observe in the research works towards the success-
ful application of DSPLs and runtime variability on 



service-oriented domains (as in the case of MUSIC and 
Lee et al). 

Among the different adaptation mechanisms that 
approaches use to support adaptation (i.e. how to 
adapt) are: Component replacements, Component 
compositions, Component frameworks, Plug-in tech-
niques, Aspect Models, activation/deactivation of Fea-
tures and Context properties, UML diagrams. In gener-
al, the mechanisms are specified during design-time 
and no explicit “ongoing design” support has been 
provided. Authors think that providing runtime support 
for how to adapt implies the use of runtime abstrac-
tions (i.e. models@run.time) that should be managed 
by the running system [5]. That way the running sys-
tem would have access to consult and even change its 
own design. This is acknowledged by the K component 
of the MAPE-K model. The more knowledge the sys-
tem is able to manage the more dynamic and adaptive 
the system can be. 

Currently, replacing a composition with an alterna-
tive to some extent achieves changes of an ongoing 
design (see discussion of MUSIC). It is worth to say 
that the change of ongoing design (at runtime) should 
be controlled and bounded according to the domain 
and circumstances.  

Open questions related to this are: What kinds of 
runtime abstractions are meaningful to a DSPL? How 
suitable are the current SPL technologies to support 
this vision? How are these technologies suited to sup-
port the required new automation/adaptation process? 
Do we need new SPL technologies for this vision?  

An interesting result is the fact that software reuse, 
a basic term in the community of SPLs and Variability 
management, is not emphatically considered and ex-
plained in the approaches studied. The exceptions in 
the approaches studied are Cetina et al and Lee et al 
who discuss about the role of software reuse in their 
approaches but not deeply.  So far the SPL community 
is related to saving development efforts related to time 
and money (before runtime). Certainly, that meaning 
changes when decisions are delayed till runtime. 

Open questions related to this are: What does it 
mean software reuse at runtime? What kind of know-
ledge would we reuse? Who would get be the main 
beneficiary of such saving? developers? users? 
clients? We think, the concept of software reuse needs 
to be reassessed under the new circumstances.  

More research is needed to tackle the intrinsic un-
certainty [34] involved in adaptive systems and delay 
design decisions related to how to adapt until runtime. 
The experience and results of the RTA community will 
prove again useful here [1, 9] as they have systemati-
cally developed mechanisms to support adaptations 
and late binding times [1, 8]. Work on artificial intelli-
gence and bio-inspired mechanisms will also be rele-

vant [22, 15]. However, this is not an easy task as we 
will need to deal with the consequent assurance that is 
required. Tackling this kind of uncertainty would mean 
dealing with higher risks and therefore the need to deal 
with assurance properties [36] that inevitably would 
need to be treated at runtime [16].  

Open questions related to this are: How well is the 
system meeting the requirements?, How to guarantee 
that the changes in the running system are correct? 
(e.g. with respect to the requirements), How to guaran-
tee that the dynamic changes in the running system are 
performed correctly? The usual collaboration that 
already exists between the SPL and requirements engi-
neering (RE) communities will prove valuable here.   
4. Conclusions 

In this paper we have presented a brief assessment 
of the current research on DSPLs and runtime varia-
bility appraising their progress, achievements and 
downsides. Knowing our limitations will help us to 
improve our research. Other colleagues have done 
similar evaluation works [9].  

The initial conclusions from our survey are that the 
current research on runtime variability is still heavily 
based on the specification of decisions during design-
time. More research is needed to tackle the intrinsic 
uncertainty involved in adaptive systems and therefore 
the need to deal with assurance properties. Furthermore, 
leaving decisions about how to adapt to the running 
system would imply (i) the use of runtime abstractions 
(in such a way that the system is able to manage know-
ledge about itself and its environment) and (ii) the need 
to reassess the meaning of software and knowledge 
reuse of SPLs for adaptive systems. The authors on 
purpose avoid the use of DSPLs in the last sentence (to 
be provocative) as even though the community has 
achieved excellent results, it seems the survey implies 
that our DSPLs are not as dynamic as we want to be-
lieve. 

For future research, we plan to extend the criteria of 
comparison and the research works evaluated. Soft-
ware reuse is a candidate to be a criterion. We will use 
a common case study to apply and explain each ap-
proach and complete the comparison analysis we have 
so far. Our original goal was to evaluate the research 
on DSPLs however, we are doing a similar evaluation 
for the case of the RTA community, i.e. we would like 
to know how dynamic the dynamic systems provided 
by the RTA community are. We are also interested in 
comparing the strengths and weaknesses of each com-
munity. 
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