
How dynamic is your Dynamic Software Product Line?

Nelly Bencomo and Jaejoon Lee
Computing Department, Lancaster University, United Kingdom

{nelly, j.lee}@comp.lancs.ac.uk

Svein Hallsteinsen
SINTEF ICT, Norway

Svein.Hallsteinsen@sintef.no

Abstract
Recently, there have been increasing demands for

the postponement of decisions on software adaptations
and product variations to provide the flexibility re-
quired by dynamic environments and users. The goal is
that software adaptations and product variations can
be chosen even at runtime. As such, a research theme
that addresses development issues for reusable and
dynamically reconfigurable core assets has emerged
and it is called dynamic software product lines
(DSPLs) with its consequential need to manage run-
time variability. Research on the use of runtime varia-
bility, however, is still heavily based on the specifica-
tion of decisions during design time. That is, a system
simply postpones “when to adapt” to runtime but
“how to adapt” is already decided at design time. In
this paper, we present a brief assessment of the current
research in the area and discuss some research issues
related to the feasibility of DSPL oriented approaches
to build self-adaptive systems.

Keywords: adaptation, runtime variability,
self-adaptive systems.

1. Introduction

In [1], commonalities and differences of variability
management between software product lines (SPLs)
and runtime adaptation (RTA) are analyzed and initial
discussions about the synergies and feasibility of inte-
grating variability management in both areas are pre-
sented. One of the conclusions was that the SPL com-
munity can provide well established variability model-
ing techniques and software reuse. At the same time,
the SPL community can profit from the management of
QoS and dependability properties, systematic ap-
proaches of variable binding time, and formalization of
context information and relations with product variants
provided by the RTA community. In this paper, we
continue the research in those lines and present a brief
report about different research works on runtime varia-
bility (also known as dynamic variability) [19]. Our

main goal is to present a brief assessment of the current
research to assess the feasibility of DSPL oriented
approaches to build self-adaptive systems.

The remainder of this paper is organized as follows.
Section 2 presents a range of approaches to tackle
runtime variability. Section 3 provides a discussion
about the comparison and contributions of the ap-
proaches and their abilities and shortcomings w.r.t.
building self-adaptive systems. Some research issues
and questions are also presented. Finally, Section 4
concludes the paper.

2. A range of approaches to tackle runtime
variability

2.1 Criteria

Numerous researchers from different research areas
and research projects have developed approaches that
use the concept of runtime variability contributing to
runtime adaptation of systems. Runtime adaptation
deals with uncertainty about the environment and so
changes (i.e. adaptations) cannot be fully predicted at
design-time [34].

Our comparison criteria are related to two different
dimensions of the uncertainty and are the following:

When to adapt: refers to the specific time where
precise circumstances (context or environment) are
given and provoke an adaptation or change. The specif-
ic moment of time is unknown during design time;
however it could be characterized during design-time
to eventually be solved at runtime.

How to adapt: refers to design decisions related to
finding the appropriate sequence of actions to adapt
and the software mechanisms that enable adaptation.
Traditionally, in SPL and RTA techniques, the ques-
tion how to adapt is decided by the designer, applica-
tion engineer, user, i.e a human; however the final goal
is having the system partially making (some) decisions.

It is important to highlight that in the context of this
paper, the later these questions are answered the more
dynamic the system is.

A further refinement of the criteria is provided by
the MAPE-K model [21, 33] proposed by IBM as a
reference model for autonomic computing systems. It
models the autonomic element as consisting of an
autonomic manager and a managed element. MAPE
denotes the four main activities of the autonomic man-
ager control loop (monitor, analyse, plan and execute),
while the K denotes the knowledge about the managed
element and its operating environment needed by these
activities to perform successfully. Monitoring and
analysis deal with “when to adapt” and planning and
executing deal with “how to adapt”.

We consider that the degree of dynamicity depends
on to which extent these tasks are driven by models
(the K component), and to which extent these models
can be extended and refined at runtime.

When it comes to how to adapt, the kind of changes
supported also plays an important role. At the basic
level is setting configuration parameters, replacing
individual parts and dynamic aspect weaving. At the
next level is the ability to modify the architecture by
replacing compositions. At the highest level is the
ability to invent new compositions at runtime.

The surveyed approaches are presented and posi-
tioned in light of this model in the following sections.

2.2 Approaches

Geihs et al [14] from the team of the EU project
MADAM promote the use of architectural models [13],
use the adaptation capabilities offered by middleware
platforms, and at some level treats dynamically adap-
tive systems as DSPLs with the corresponding support
for variability management. In contrast to traditional
event-condition-action (ECA) rules, they use goal
policies provided during design time which are ex-
pressed as utility functions leaving to the running sys-
tem the decisions on when to apply the actions required
to implement the policies (tackling the question when
to adapt). The reconfiguration steps to follow are de-
termined by comparing the actual running system with
new architectural variant models based on the utility
function. The main variability mechanism provided by
the MADAM approach consists of loading different
implementations for each component type (primitive or
composite) of the architecture. Using primitive compo-
nent types, fine grain management of variability can be
used to describe specific component replacements or
specializations. They also take into account the bene-
fits of coarse grained variability mechanisms using
composite components. Both, fine and coarse-grained
mechanisms are specified at design-time. The reason-
ing on when and how to adapt are based on models
packaged with the component implementations (atomic

or composite), and component implementations can be
added or withdrawn at runtime. All variation points are
open and the available component implementations
and compositions are discovered dynamically at run-
time. This enables to extend and refine the adaptation
capabilities at runtime. The MADAM approach fo-
cuses on mobile computing applications.

The EU MUSIC project [32, 20, 23], strongly inspired
in the previous results of MADAM, extends and gen-
eralises the experimental solutions developed in
MADAM and take them to a next level of maturity
[28]. It applies the same adaptation reasoning approach
as MADAM, but generalises the approach to ubiqui-
tous computing and Service Oriented Architectures
(SOA). This includes extending the monitoring task
with dynamic service discovery and the monitoring of
service quality, and the executing task with the possi-
bility to change service binding and service offers.
With this the adaptation controller controls not only the
internal configuration of a system, but also its collabo-
ration with other systems, which in turn enables the
creation of new structure at runtime. As in MADAM,
in MUSIC all variation points are also open and the
available component implementations and composi-
tions are discovered dynamically at runtime. However,
forming of new compositions at runtime is supported.
The sequence of steps necessary to get from the current
to the new configuration is derived at runtime based on
the differences between the two.

Bencomo et al [3, 4] and the team of the UK

project Divergent Grid [18] offer the Genie approach
that also uses architecture models to support the gener-
ation and execution of dynamically adaptive systems
based on component-based middleware technologies.
A state machine is defined to specify the adaptive logic
of the system. Each state embodies a system configura-
tion (target system), and transitions describe when
(needed conditions) and how the reconfigurations take
place (reconfiguration script). The architectural models
are complemented and documented using explicitly
orthogonal variability models (OVM) [31]. These
architectural and variability models are used to gener-
ate different software artifacts, e.g. configuration files
and event-condition-actions (ECA) adaptation policies.
The adaptation policies generated from the state ma-
chine solve the question when to adapt at runtime. The
drawbacks of the approach are that (i) the possible
system configurations need to be enumerated and fully
specified, and (ii) the reconfiguration scripts should be
written manually. However, using the API offered by
the underlying execution platform some degree of
support for unforeseen configurations and adaptation
rules is managed as new behavior can be dynamically

inserted [2] without restarting the system. New beha-
vior should also be validated in advance. Bencomo et
al. work covers the domains grid, mobile computing,
and embedded systems.

Wolfinger et al [35] prove the benefits of the inte-

gration of an existing product line engineering tool
suite with a plug-in platform for enterprise software. In
the same way as the Genie approach explained above,
the knowledge documented in variability models sup-
port the decisions made to achieve automatic runtime
reconfiguration and adaptation, i.e. design decisions
contained in the variability models (decision models
[10]) will be delayed till runtime (answering when to
adapt). Different from the approaches Genie and MA-
DAM/MUSIC described above, Wolfinger et al focus
on enterprise software domains. While variability deci-
sions in Wolfinger’s approach are user-centered, the
variability decisions in Genie and MADAM/MUSIC
are mainly environment-centered.

Morin et al [27, 26] from the EU DiVA project

[11] use model-driven engineering (MDE) and aspect-
oriented modeling (AOM) techniques to support run-
time variability. Tackling the explosion of the number
of configurations potentially presented by all the ap-
proaches explained above, Morin et al offer an alterna-
tive solution that automatically builds architectures by
composing modules (called aspects) associated to fea-
tures, instead of fully specifying all the possible confi-
gurations. Depending on the current context, suitable
aspect models are woven into a base model (that covers
the communality), in order to build a complete target
configuration, well fitted to the current context. After
models validation, and as in MUSIC project, a compar-
ison between the current configuration and the target
configuration is performed. The comparison results
allow the generation of the reconfiguration scripts
needed to adapt the running system from one configu-
ration to another more suitable to the current context.
The reconfiguration scripts describe reconfiguration
commands that adapt the system architecture enabling
therefore the development of adaptive systems avoid-
ing the enumeration of all the potential configurations
(similar to MUSIC). Crucially, the adaptation model
includes invariant properties and constrains that allow
the validation of the adaptation rules before execution
at design-time using model-checking techniques [12].
A set of adaptation rules are defined based on proper-
ties of the system-to-be optimized during runtime, i.e.
adaptation rules express the adaptation policy in terms
of the properties of the system to optimize and not
directly in terms of the variants to use. Optimization
decisions are performed at runtime (answering when to
adapt). Variability decisions in Morin’s et al approach

are both environment-centered and user-centered con-
tained in the specification of contexts.

The approach proposed by Lee et al is described in

[25, 24]. The authors address issues in the area of
adaptive service-oriented architectures (SOA) by
adapting a feature-oriented product line engineering
approach. The approach is based on the feature analy-
sis technique to support the identification of services of
service-oriented systems. The approach guides devel-
opers to identify services, to map users’ context to
relevant service configuration, and to maintain system
integrity in terms of invariants and pre/post conditions
of services. In their approach, the runtime system inte-
racts with service providers’ using an automated nego-
tiation broker which uses QoS negotiation and service
level agreement (SLA) evaluation and a provider rating
to ensure service acceptability. A monitor is provided
which actively observes the QoS requirements and
triggers a new negotiation (adaptation) whenever SLA
is violated at runtime (answering the question when to
adapt).

Cetina et al [6, 7] from the SESAMO project out-

line reuse design variability models during runtime to
tackle runtime variability. The benefits are immediate,
as the design knowledge and existing model-based
technologies can be reused at runtime. The runtime
variability models support the self-reconfiguration of
systems when triggered by changes in the environment.
The question when to adapt is solved at runtime when
checking a set of context conditions. The approach
performs reconfiguration in terms of features and uses
an engine called MoRE to translate contextual changes
into changes in the activation/deactivation of features.
The engine generates the reconfiguration plans (recon-
figuration actions) that will modify the system archi-
tecture activating/deactivating features. Cetina et al
have applied their approach to the smart-homes domain.

Perrouin et al [30] also tackle the problem of the

exponential number of configurations and adaptations.
However, different from works described above the
authors acknowledges the complex relationships be-
tween the running system and its environment which
may impact application functionalities and perform-
ance. Perrouin et al advocate that when capturing these
relationships directly using a limited set of architec-
tural models creates the risk of overlooking important
environmental states and thus missing relevant archi-
tectural configurations. Therefore, the authors propose
models for three different dimensions stressing separa-
tion of concerns: functional dimension (modelled using
feature diagrams), topological dimension aiming at
defining the possible bindings configurations for given

set of components (architecture), and platform dimen-
sion. The models of these dimensions are fully speci-
fied during design-time. Authors “do not integrate
timing issues” [30], i.e. they do not tackle when to
adapt, therefore all the design decisions are made be-
fore runtime and they are not re-evaluated at runtime.

Gomaa and Hussein [17] present their approach
for the design of reconfiguration patterns for dynamic
reconfiguration of software product families. Gomaa
and Hussein see software reconfiguration pattern as a
solution to the problem in a software product family
where the configuration needs to be updated while the
system is operational. Patterns define how a set of
components participating cooperate to change the con-
figuration of a system from one configuration of the

product family to another. Their approaches do not
explicitly say how to delay design decision till runtime.

There are other research projects and approaches;

however, they tend to fail tackling the questions when
and how to adapt, adding nothing new to our report.

3. Discussion

The overall results of the comparison are shown in
Table 1. For each approach, the table shows if the
questions are answered at runtime (using a check
mark) or before i.e. at design-time.

Approach When How
 M A P E K

MADAM
at runtime and

encoded in archi-
tecture/context

model

at runtime
encoded in ar-

chitecture/context
model

at runtime
generation of

reconfiguration
scripts

 supports
configuration

parameters and
replacement of

components
and compositions

context
model+

architecture
model

annotated
with property
predictors and

utility
function.
Models

extendable at
runtime

MUSIC
at runtime and

encoded in archi-
tecture/context

model

at runtime
encoded in archi-
tecture/context

model

at runtime
generation of

reconfiguration
scripts

+dynamic ser-
vice bindings

(that were
never designed

explicitely)

Same as
above

+ service binding
and service offers

+ aspects

Same as
above + QoS
aware model
of available

service
providers and
own service

offers
Models

extendable at
runtime

Genie and
Divergent

Grid
Bencomo et

al

at run-time
 and encoded in the
state machine

at design time
and encoded in the

state machine

at design
time and en-
coded in the

state machine

at design-time
Component re-

placements
Component com-

positions (with
component

frameworks)

context
model+

architecture
model

Models

extendable at
runtime

Wolfinger
et al

at runtime
Decision models

at design time at design
time

at design-time
Plug-in techniques

N/A

DiVA
Morin et al at runtime

adaptation rules

at runtime
Optimization of
adaptation rules

using fuzzy logic

at runtime
generation of
reconfiguration
scripts

Component
Compositions
(architectural

models)
Aspect mod-
els/weaving

context
model+

architecture
model +
aspects
models

Models

extendable at
runtime

Lee et al
 at runtime

Monitoring SLA
and QoS properties

at runtime
Optimization in
terms of QoS

at design-
time

Feature dia-
grams

Service con-
tracts

at design-time
Component re-

placements
Component com-
positions (with C2

style architec-
ture)

context
model+

architecture
model

Models not
extendable at

runtime

SESAMO
Cetina et al at run-time

Monitoring context
conditions

at design-time

at design-
time

Feature dia-
grams and

Context proper-
ties

Feature tree (acti-
vation and deacti-
vation of features)

Feature Trees
Models not

extendable at
runtime

Perrouin et
al

at design-time

at design-time

at design-
time

Functional,
topology and
platform di-

mensions
(UML models)

N/A N/A

Gomaa and
Hussein

at design-time at design-time at design-
time

Design patterns
(UML models)

N/A N/A

solved at runtime and driven by models/decisions specified at design time
(if extendable at runtime shown in K column)

soved at designed-time, decisions are specified before runtime (design or deployment time)

Table 1. Results of the comparison.

The results show that there have been excellent con-
tributions in the area. However, the survey also shows
that our current DSPLs may not be as dynamic as we
want to believe. The current research on runtime varia-
bility still focuses on the specification of decisions
during design-time with few exceptions like generation
of the reconfiguration scripts during runtime, (see
discussions for MADAM, MUSIC, and DiVA). Deci-
sions taken at runtime are heavily based on the uncer-

tainty related to “when to adapt” and no definite an-
swers are provided to tackle uncertainty related to
“how to adapt”. As an anecdote, it looks like we can-
not get rid of the basic good old lessons from abstract
interfaces and decomposition [29] and design by con-
tract made during design. This may explain the bias we
can observe in the research works towards the success-
ful application of DSPLs and runtime variability on

service-oriented domains (as in the case of MUSIC and
Lee et al).

Among the different adaptation mechanisms that
approaches use to support adaptation (i.e. how to
adapt) are: Component replacements, Component
compositions, Component frameworks, Plug-in tech-
niques, Aspect Models, activation/deactivation of Fea-
tures and Context properties, UML diagrams. In gener-
al, the mechanisms are specified during design-time
and no explicit “ongoing design” support has been
provided. Authors think that providing runtime support
for how to adapt implies the use of runtime abstrac-
tions (i.e. models@run.time) that should be managed
by the running system [5]. That way the running sys-
tem would have access to consult and even change its
own design. This is acknowledged by the K component
of the MAPE-K model. The more knowledge the sys-
tem is able to manage the more dynamic and adaptive
the system can be.

Currently, replacing a composition with an alterna-
tive to some extent achieves changes of an ongoing
design (see discussion of MUSIC). It is worth to say
that the change of ongoing design (at runtime) should
be controlled and bounded according to the domain
and circumstances.

Open questions related to this are: What kinds of
runtime abstractions are meaningful to a DSPL? How
suitable are the current SPL technologies to support
this vision? How are these technologies suited to sup-
port the required new automation/adaptation process?
Do we need new SPL technologies for this vision?

An interesting result is the fact that software reuse,
a basic term in the community of SPLs and Variability
management, is not emphatically considered and ex-
plained in the approaches studied. The exceptions in
the approaches studied are Cetina et al and Lee et al
who discuss about the role of software reuse in their
approaches but not deeply. So far the SPL community
is related to saving development efforts related to time
and money (before runtime). Certainly, that meaning
changes when decisions are delayed till runtime.

Open questions related to this are: What does it
mean software reuse at runtime? What kind of know-
ledge would we reuse? Who would get be the main
beneficiary of such saving? developers? users?
clients? We think, the concept of software reuse needs
to be reassessed under the new circumstances.

More research is needed to tackle the intrinsic un-
certainty [34] involved in adaptive systems and delay
design decisions related to how to adapt until runtime.
The experience and results of the RTA community will
prove again useful here [1, 9] as they have systemati-
cally developed mechanisms to support adaptations
and late binding times [1, 8]. Work on artificial intelli-
gence and bio-inspired mechanisms will also be rele-

vant [22, 15]. However, this is not an easy task as we
will need to deal with the consequent assurance that is
required. Tackling this kind of uncertainty would mean
dealing with higher risks and therefore the need to deal
with assurance properties [36] that inevitably would
need to be treated at runtime [16].

Open questions related to this are: How well is the
system meeting the requirements?, How to guarantee
that the changes in the running system are correct?
(e.g. with respect to the requirements), How to guaran-
tee that the dynamic changes in the running system are
performed correctly? The usual collaboration that
already exists between the SPL and requirements engi-
neering (RE) communities will prove valuable here.
4. Conclusions

In this paper we have presented a brief assessment
of the current research on DSPLs and runtime varia-
bility appraising their progress, achievements and
downsides. Knowing our limitations will help us to
improve our research. Other colleagues have done
similar evaluation works [9].

The initial conclusions from our survey are that the
current research on runtime variability is still heavily
based on the specification of decisions during design-
time. More research is needed to tackle the intrinsic
uncertainty involved in adaptive systems and therefore
the need to deal with assurance properties. Furthermore,
leaving decisions about how to adapt to the running
system would imply (i) the use of runtime abstractions
(in such a way that the system is able to manage know-
ledge about itself and its environment) and (ii) the need
to reassess the meaning of software and knowledge
reuse of SPLs for adaptive systems. The authors on
purpose avoid the use of DSPLs in the last sentence (to
be provocative) as even though the community has
achieved excellent results, it seems the survey implies
that our DSPLs are not as dynamic as we want to be-
lieve.

For future research, we plan to extend the criteria of
comparison and the research works evaluated. Soft-
ware reuse is a candidate to be a criterion. We will use
a common case study to apply and explain each ap-
proach and complete the comparison analysis we have
so far. Our original goal was to evaluate the research
on DSPLs however, we are doing a similar evaluation
for the case of the RTA community, i.e. we would like
to know how dynamic the dynamic systems provided
by the RTA community are. We are also interested in
comparing the strengths and weaknesses of each com-
munity.

Acknowledgments: This work was partially funded by
the DiVA project (EU FP7 STREP).

5. References

[1] Vander Alves, Daniel Schneider, Martin Becker,
Nelly Bencomo, and Paul Grace. Comparitive study of
variability management in software product lines and
runtime adaptable systems. In VaMoS, pages 9–17, 2009.
[2] Nelly Bencomo and Gordon Blair. Using
architecture models to support the generation and operation
of component-based adaptive systems. In Betty H. C.
Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi,
and Jeff Magee, editors, Software Engineering for Self-
Adaptive Systems. LNCS, 2009.
[3] Nelly Bencomo, Gordon Blair, Carlos Flores, and
Pete Sawyer. Reflective component-based technologies to
support dynamic variability. In 2nd International
Workshop on Variability Modelling on Software-intensive
Systems (VaMoS'08), Essen, Germany, 2008.
[4] Nelly Bencomo, Paul Grace, Carlos Flores, Danny
Hughes, and Gordon Blair. Genie: Supporting the model
driven development of reflective, component-based
adaptive systems. In ICSE 2008 - Formal Research
Demonstrations Track, 2008.
[5] Gordon Blair, Nelly Bencomo, and Robert B.
France. Models@ run.time. Computer, 42(10):22–27,
2009.
[6] C. Cetina, J. Fons, and V. Pelechano. Applying
software product lines to build autonomic pervasive
systems. pages 117–126, Sept. 2008.
[7] Carlos Cetina, Pau Giner, Joan Fons, and Vicente
Pelechano. Autonomic computing through reuse of
variability models at runtime: The case of smart homes.
Computer, 42(10):37–43, 2009.
[8] Betty H.C. Cheng, Holger Giese, Paola Inverardi,
Jeff Magee, Rogerio de Lemos, Jesper Andersson, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic,
Giovanna Di Marzo Serugendo, Schahram Dustdar,
Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo
Grassi, Gabor Karsai, Holger Kienle, Jeff Kramer, Marin
Litoiu, Sam Malek, Raffaela Mirandola, Hausi Müller,
Sooyong Park, Mary Shaw, Matthias Tichy, Massimo
Tivoli, Danny Weyns, and Jon Whittle. Software
engineering for self-adaptive systems: A research road
map. In Betty H. C. Cheng, Rogerio de Lemos, Holger
Giese, Paola Inverardi, and Jeff Magee, editors, Software
Engineering for Self-Adaptive Systems, volume 5525 of
Lecture Notes in Computer Science, Dagstuhl, Germany,
2009. Springer.
[9] A. Classen, A. Hubaux, F. Saneny, E. Truyeny,
J. Vallejos, P. Costanza, W. De Meuter, P. Heymans, and
W. Joosen. Modelling variability in self-adaptive systems:
Towards a research agenda. In Proc. of the 1st Workshop
on Modularization, Composition, and Generative
Techniques for Product Line Engineering held as part of
GPCE’08, October 2008.
[10] Deepak Dhungana, Grünbacher Paul, and Rick
Rabiser. Decisionking: A flexible and extensible tool for
integrated variability modeling. In VAMOS'07 First
International Workshop on Variability Modelling of
Software-intensive Systems, 2007.

[11] DiVA. Diva-dynamic variability in complex,
adaptive systems, http://www.ict-diva.eu/, 2008.
[12] Franck Fleurey, Vegard Dehlen, Nelly Bencomo,
Brice Morin, and Jean-Marc Jezequel. Modeling and
validating dynamic adaptation. In Workshops and
Symposia at MODELS 2008, volume 5421M.R.V.
Chaudron, 2008.
[13] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav,
Frank Eliassen, Ketil Lund, and Eli Gjorven. Using
architecture models for runtime adaptability. Software
IEEE, 23(2):62–70, 2006.
[14] K. Geihs, P. Barone, F. Eliassen, J. Floch,
R. Fricke, E. Gjorven, S. Hallsteinsen, G. Horn, M. U.
Khan, A. Mamelli, G. A. Papadopoulos, N. Paspallis,
R. Reichle, and E. Stav. A comprehensive solution for
application-level adaptation. Softw. Pract. Exper.,
39(4):385–422, 2009.
[15] Heather J. Goldsby, Betty H.C. Cheng, Philip K.
McKinley, David B. Knoester, and Charles A. Ofria.
Digital evolution of behavioral models for autonomic
systems. Autonomic Computing, International Conference
on, 0:87–96, 2008.
[16] Heather J. Goldsby, Betty H.C. Cheng, and
Ji Zhang. Amoeba-rt: Run-time verification of adaptive
software. In Lecture Notes in Computer Science, Satellite
Events at the Conference MODELS'2007 (Workshop
Models@run.time). Springer-Verlag, 2008.
[17] Hassan Gomaa and Mohamed Hussein. Dynamic
software reconfiguration in software product families. In
PFE, pages 435–444, 2003.
[18] Paul Grace, Geoff Coulson, Gordon Blair, Laurent
Mathy, David Duce, Chris Cooper, Wai Kit Yeung, and
Wei Cai. Gridkit: Pluggable overlay networks for grid
computing. In Symposium on Distributed Objects and
Applications (DOA), Cyprus, 2004.
[19] Svein Hallsteinsen, Mike Hichey, Sooyong Park,
and Klaus Schmid. Dynamic software product lines. IEEE
Computer, pages 93 – 95, 2008.
[20] Svein O. Hallsteinsen, S. Jiang, and R. Sanders.
Dynamic software product lines in service oriented
computing. In 3rd Int. Work. on Dynamic Software Product
Lines (DSPL) (2009), 2009.
[21] Markus C. Huebscher and Julie A. McCann. A
survey of autonomic computing—degrees, models, and
applications. ACM Comput. Surv., 40(3):1–28, 2008.
[22] Lee Jaejoon, Whittle Jon, and Storz Oliver. Bio-
inspired mechanisms for coordinating multiple instances of
a service feature in dynamic software product lines. In
Workshop Dynamic Software Product Lines (DSPLs),
2009.
[23] Shanshan Jiang, Svein O. Hallsteinsen, Paolo
Barone, Alessandro Mamelli, Stephan Mehlhase, and
Ulrich Scholz. Hosting and using services with qos
guarantee in self-adaptive service systems. In DAIS, pages
15–28, 2010.
[24] Gerald Kotonya, Jaejoon Lee, and Daniel
Robinson. A consumer-centred approach for service-
oriented product line development. In WICSA/ECSA, pages
211–220, 2009.

[25] Jaejoon Lee, Dirk Muthig, and Matthias Naab. An
approach for developing service oriented product lines. In
SPLC, pages 275–284, 2008.
[26] Brice Morin, Olivier Barais, Gregory Nain, and
Jean-Marc Jezequel. Taming dynamically adaptive systems
using models and aspects. In International COnference in
Software Engineering (ICSE), 2009.
[27] Brice Morin, Franck Fleurey, Nelly Bencomo,
Jean-Marc Jezequel, Arnor Solberg, Vegard Dehlen, and
Gordon Blair. An aspect-oriented and model-driven
approach for managing dynamic variability. In
MODELS'08 Conference, France, 2008.
[28] MUSIC. http://www.ist-music.eu/music, 2008.
[29] D. Parnas. On the criteria for decomposing systems
into modules. Communications of the ACM, 15(12):1053–
1058, 1972.
[30] Gilles Perrouin, Franck Chauvel, Julien DeAntoni,
and Jean-Marc Jézéquel. Modeling the variability space of
self-adaptive applications. In 2nd International Workshop
on Dynamic Software Product Lines (DSPL 2008), pages
15–22, 2008.
[31] Klaus Pohl, GÃ¼nter Böckle, and Frank van der
Linden. Software Product Line Engineering- Foundations,
Principles, and Techniques. Springer, 2005.
[32] Romain Rouvoy, Paolo Barone, Yun Ding, Frank
Eliassen, Svein O. Hallsteinsen, Jorge Lorenzo, Alessandro
Mamelli, and Ulrich Scholz. Music: Middleware support
for self-adaptation in ubiquitous and service-oriented
environments. In Software Engineering for Self-Adaptive
Systems, pages 164–182, 2009.
[33] Mazeiar Salehie and Ladan Tahvildari. Self-
adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009.
[34] Jon Whittle, Pete Sawyer, Nelly Bencomo,
Betty H.C. Cheng, and Jean-Michel Bruel. Relax:
Incorporating uncertainty into the specification of self-
adaptive systems". In 17th IEEE International
Requirements Engineering Conference RE 2009, 2009.
[35] Reinhard Wolfinger, Stephan Reiter, Deepak
Dhungana, Paul Grunbacher, and Herbert Prahofer.
Supporting runtime system adaptation through product line
engineering and plug-in techniques. In Seventh
International Conference on Composition-Based Software
Systems (ICCBSS 2008), pages 21 – 30, 2008.
[36] Ji Zhang. A formal approach to providing
assurance to dynamically adaptive software. PhD thesis,
East Lansing, MI, USA, 2007. Adviser-Cheng, Betty H.C.

